

Non-linear hypotheses

Non-linear Classification

 $g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ $+\theta_3 x_1 x_2 + \theta_4 x_1^2 x_2$ $+\theta_5 x_1^3 x_2 + \overline{\theta_6 x_1 x_2^2} + \dots)$ X_2 >X1, X1X2, X1X3, X1X4 X1X100 X2, X1 × 3 → X₁ $6(n^2)$ ~ sooo teature $\rightarrow \underline{x_1} = \text{size}$ X12, X1, X3, ..., X100 $\overline{x_2} =$ # bedrooms h=(00 -> X, X2X3, X12X2, X10X11 X17, ... $\overline{x}_3 =$ # floors $x_4 = age$ 170,000 *x*₁₀₀ _

What is this?

You see this:

But the camera sees this:

	194	210	201	212	199	213	215	195	178	158	182	209	
	180	189	190	221	209	205	191	167	147	115	129	163	
	114	126	140	188	176	165	152	140	170	106	78	88	
	87	103	115	154	143	142	149	153	173	101	57	57	
	102	112	106	131	122	138	152	147	128	84	58	66	
	94	95	79	104	105	124	129	113	107	87	69	67	
	68	71	69	98	89	92	98	95	89	88	76	67	
	41	56	68	99	63	45	60	82	58	76	75	65	
	20	43	69	75	56	41	51	73	55	70	63	44	
	50	50	57	69	75	75	73	74	53	68	59	37	
1	72	59	53	66	84	92	84	74	57	72	63	42	
	67	61	58	65	75	78	76	73	59	75	69	50	

Computer Vision: Car detection

Cars

Not a car

Testing:

What is this?

Andrew Ng

Neurons and the brain

Neural Networks

- Origins: Algorithms that try to mimic the brain.
 Was very widely used in 80s and early 90s; popularity
 - diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications

The "one learning algorithm" hypothesis

The "one learning algorithm" hypothesis

Sensor representations in the brain

Seeing with your tongue

Haptic belt: Direction sense

Human echolocation (sonar)

Implanting a 3rd eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]

Model representation I

Neuron in the brain

Neurons in the brain

[Credit: US National Institutes of Health, National Institute on Aging]

Neuron model: Logistic unit

Sigmoid (logistic) activation function.

$$g(z) = \frac{1}{(4e^{-2})}$$

Neural Network

Model representation II

Forward propagation: Vectorized implementation (\mathbf{f}) +1 $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \frac{z^{(2)}}{r} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$ x_0 $a_1^{(2)}$ x_1 $\rightarrow h_{\Theta}(x)$ (2) 72 $a_{2}^{(2)}$ $a_3^{(2)}$ (2) $z^{(2)} = \Theta^{(1)} \times \mathbf{a}^{(1)}$ 0 0 0 $a_1^{(2)}$ $= g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$ $a^{(2)} = g(z^{(2)})$ **2**⁽²⁾ $a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$ Add $a_0^{(2)} = 1. \longrightarrow \alpha^{(2)}$ ell24 $\Rightarrow a_3^{(2)}$ $= g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$ $z^{(3)} = \Theta^{(2)} a^{(2)}$ $- \Theta^{(2)} a^{(2)}$ $h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$ $\Rightarrow h_{\Theta}(x) = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)})$ $a_{2}^{(1)} = q\left(2^{(1)}_{2}\right)^{1} \left(3^{(2)}_{2}\right)$

Neural Network learning its own features

Other network architectures

Examples and intuitions I

Non-linear classification example: XOR/XNOR

 \rightarrow x_1 , x_2 are binary (0 or 1).

Example: OR function

Examples and intuitions II

50,13

 $\rightarrow x_1 \text{ AND } x_2$

Negation:

 x_1

10

-20

$$h_{\Theta}(x) = g(10 - 20x_1)$$

$$\rightarrow (\text{NOT } x_1) \text{ AND } (\text{NOT } x_2)$$

$$\overbrace{=1 \quad if \text{ and only } if}_{\rightarrow x_1 = x_2 = 0}$$

 $\rightarrow x_1 \text{ OR } x_2$

Neural Network intuition

Handwritten digit classification

Handwritten digit classification

Multi-class classification

Multiple output units: One-vs-all.

