Regularization

The problem of
overfitting

Machine Learning



Example: Linear regression (housing prices)
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Overfitting: If we have too many features the learned hypothesis
may fit the training set very well (7(¢) = Z(he(ar( ) —y)*~0), but fail
to generalize to new examples (préaTcTTﬁEEs on new examples).
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Example: Logistic regression
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Addressing overfitting:
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Addressing overfitting:

Options:
1. Reduce number of features.
— — Manually select which features to keep.

—>— Model selection algorithm (later in course).

2. Regularization.
= — Keep all the features, but reduce magnitude/values of

parameters 0,
— Works well when we have a lot of features, each of

which contributes a bit to predicting v.
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Regularization

Cost function
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Intuition
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Suppose we penalize and make 03, 04 really small.
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Regularization.

Small values for parameterslé’o, 01, . e 0,, l%
— “Simpler” hypothesis <=1

— Less prone to overfitting <— =793, S
. 7\ X O
Housing:
— Features: Z1,%2,...,Z100 €
— Parameters: 6y, 6,065, ..., 6100 ,
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Regularization.

—> J(0) = 5, {i (ho (=) —
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In regularized linear regression, we choose ¢ to minimize
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What if A is set to an extremely large value (perhaps for too large
for our problem, say A = 10'9)?

Algorithm works fine; setting )\ to be very large can’t hurt it
Algortihm fails to eliminate overfitting.

Algorithm results in underfitting. (Fails to fit even training data
well).

Gradient descent will fail to converge.
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In regularized linear regression, we choose ¢ to minimize
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What if A is set to an extremely large value (perhaps for too large
for our problem, say A = 10'9)?
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Regularized linear regression

(h@(ﬂ?(i)) _ y(i))2 +® > 932-
i=1 j=1

— )




Gradient descent

Repeat {
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Normal equation
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Non-invertibility (optional/advanced).
Suppose m < n, &

(#examples) (#features)

0= (XTX)"1xTy
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Regularized
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Regularized logistic regression.

L %
hg (ZU) — (90 + 0121 + ng%
+03x3 w9 + 042575
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— J(0) = — — Zy(r‘) log hg(z@) + (1 — y D) log(1 — he(z'?))




Gradient descent
Repeat {
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L enond (@ esttotg e 790 7 Tt lh
Advanced optimization ~ v TRt ()

= ey fhetal
—~> function [jVal gradient] = costFunction (theta) 2Tal ""“\

jval = [code tocompute J(0)];
= J(6) = |~ £y log (ha() + (1 ) log 1 = el | 4/ 25 3 6

—> gradient (1)

[code to compute 320 J(O)1;

- fj(he(ﬁ()) ()

=1

- gradient (2) = [code to COﬁute \@9’_‘9__{ —S' ( @)

(Lm > (ho (D) — y¥)

7—=1
>, gradient (3) = [code to compute 392 ;

(m 5 (h(2®) — y@)z i)_ e
L_/J

=1

gradient (n+l1l) = [code to compute %J(Q) 1;
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