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Prediction!
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Line (v1):



Is this good enough?!!

NOOOOOOOO!

We need to minimize the error!
But, how?



Error (residual)Actual

Estimated





BAAAAAAAAAAAAM!!!!





Ridge (L2) Regression

Challenge: 
Multicollinearity ⟶ high correlation among predictor variables.
Multicollinearity can lead to unstable and unreliable coefficient estimates in linear regression.

Regularization:
It adds a penalty term to the cost function of linear regression.

Regularization parameter

Regularization parameter:
It shrinks the coefficients towards zero, reduces the effect of multicollinearity and stabilizes 
coefficient estimates.



Lasso (L1) Regression

Challenge: multicollinearity

Goal: 
find the best-fitting linear model while preventing overfitting, a situation where the model 
captures noise and performs poorly on the test dataset.

Regularization parameter

Traditional linear regression uses all predictors, risking overfitting in high-dimensional data. 
Higher Lasso penalty forces some coefficients to zero, automatically picking good features 
and dropping irrelevant ones from the model.



Logistic Regression



Classification!
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It is relatively easy to fit lines to things, and relatively hard to fit squiggles. 
So, we use the log() space to fit a line to the data and then translate that 
back to probabilities!!!



In y- axis of linear regression values can be any number
In y-axis of logistic regression values are bounded to be between 0 and 1

In order to get a linear relationship between predictors and target,
we transfer the y-axis from “probability of intuition” to “log(odds of intuition)”. 
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Problem!!!!!

The y-axis transformation pushes the data 
points to positive and negative infinity …
This means that residuals are also equal to 
positive and negative infinity.

Therefore, we can’t use least-squares to 
find the best fitting line!



To solve that problem,
We fit the line by using Maximum Likelihood!

1. First we project data points to    
our candidate line. This gives a 
log(odds) value to each sample.+infinity
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1. First we project data points to    
our candidate line. This gives a 
log(odds) value to each sample.

2. Then, we transform log(odds) to 
probabilities using below formula:
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1. First we project data points to      
our candidate line. This gives a 
log(odds) value to each sample.

2. Then, we transform log(odds) to 
probabilities using below formula:

3. Calculate likelihood of transformed 
data points to find the shape of our
squiggle.
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Likelihood of a sample 
 ==

predicted probability

Likelihood of all data points →
(0.91 * 0.9 * 0.92) * 
( (1 - 0.9) * (1 - 0.3) * (1 -  0.001) )  = - 3.7

This also means that the likelihood of 
the log(odds) line is -3.7

1

0

Complexity of mathematical concept

Pr
ob

ab
ili

ty
 o

f o
cc

ur
re

nc
e 

X X X X X

X 0.5

X X X X X



+infinity

-infinity

    X X X X X X

    X X X X X X

0

5. Now, we rotate log(odss) line and again 
calculate the likelihood.

6. Finally, we choose a line that have the 
biggest overall likelihood (maximum)!

-3.7 - 4.2



DOUBLE BAAAAAAAAAAAAAM!!!!!





Support Vector Machines



White ball is classified!

Is it logical to classify the white ball as green?!



White ball is classified!

Margin



When we use a threshold that give the biggest margin
We are using a maximal margin classifier!!!

In this case, the middle point is the largest margin.

Margin



Problem!!!!
Maximal margin classifier are sensitive to outliers!

To solve this:  
We should allow misclassifications.
A margin that allows misclassification are called "Soft Margin”.

In order to find the best soft margin, we need to do “Cross Validation”!



When we use a soft margin to determine the best threshold to 
classify observations, we are using a “Soft Margin Classifier” 
a.k.a “Support Vector Classifier”!

Misclassification/Outlier

Soft marginSoft margin



What if our data would be like this?

No matter where you set the margins …
Support vector classifier cannot handle it!

This is where we need “Support Vector Machines”!!!!



The main idea behind the SVM:

1. Start with the data in a lower dimension
In this case, a 1-dimensional space



The main idea behind the SVM:

2. Move the data to a higher dimension.
In this case, a 2-dimensional space



The main idea behind the SVM:

3. Find the support vector classifier that can 
separate the higher dimension data into two groups.

BAAAAAAAM!



How we decide how to transform the data to a higher dimension?
In below case, we used power 2 of the x-axis values to create the y-axis. 

But, what about square root? Or power 3?

By using Kernels!!!!



For example: “Polynomial Kernel Function”

It increases the dimension by setting d parameter (degree of the polynomial)
In below case, d is equal to 2. To be exact, it computes 2-dimensional 
relationships between each sample pair.



Thank you for your time!


