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Linear Regression



Prediction!
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Weight (X) | Price (Y)
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36 8.72
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Weight

Y — g X Price

X : Feature (independent variable)

Y : Target (dependent variable)
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« : Slope of the line
B . Intercept

Line (v1):
g(X)=05X +2
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Is this good enough?!!
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We need to minimize the error!
But, how?
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' Line equation: ¢(X)=0,X + 6,
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Parameters: 6o, 61
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Cost function:

- (‘Estimated J (0o, 01) = Z - = MSFE
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ﬂrv) Goal:

minimize J(6y, 61)

<Y



J(thetar)
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Cost at step O

\
—— cost

----- derivative at theta;

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
theta;

Set random values for #yand 6,
Changing #pand 6, to minimize J
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@ target:y
—— Regression line: y = x * theta + thetag

target: y
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input: x

repeat until convergence {
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Linear Regression: Single Variable
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Predicted output Coefficients Input

Linear Regression: Multiple Variables
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Ridge (L2) Regression

Challenge:
Multicollinearity — high correlation among predictor variables.
Multicollinearity can lead to unstable and unreliable coefficient estimates in linear regression.

Regularization:
It adds a penalty term to the cost function of linear regression.

p
Cost Function = Least Squares Loss + _a Z(Coefﬁcientg )

Regularization parameter j—1

Regularization parameter:
It shrinks the coefficients towards zero, reduces the effect of multicollinearity and stabilizes
coefficient estimates.



Lasso (L1) Regression

Challenge: multicollinearity

Goal:
find the best-fitting linear model while preventing overfitting, a situation where the model

captures noise and performs poorly on the test dataset.

number of features

Cost Function = Least Squares Loss + A X Z |coef ficient,|
=’ =1

Regularization parameter J

Traditional linear regression uses all predictors, risking overfitting in high-dimensional data.
Higher Lasso penalty forces some coefficients to zero, automatically picking good features
and dropping irrelevant ones from the model.



Logistic Regression



Classification!

Complexity (X) | Intuition (Y)
2 0
1 0
40 1
36 1
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Classification!

Complexity (X) | Intuition (Y)
2 0
1 0
40 1
36 1

Probability of occurrence
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It is relatively easy to fit lines to things, and relatively hard to fit squiggles.
So, we use the log() space to fit a line to the data and then translate that
back to probabilities!!!




In y- axis of linear regression values can be any humber
In y-axis of logistic regression values are bounded to be between O and 1

In order to get a linear relationship between predictors and target,
we transfer the y-axis from “probability of intuition” to “log(odds of intuition)”.
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To solve that problem,
We fit the line by using Maximum Likelihood!

1. First we project data points to
our candidate line. This gives a
+infinity A log(odds) value to each sample.
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Probability of occurrence
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Complexity of mathematical concept

First we project data points to
our candidate line. This gives a
log(odds) value to each sample.

Then, we transform log(odds) to
probabilities using below formula:

6log(odds)
p= 1_|_€l0g(odds)
6—2.1
= ———=0.1
P Ty et



Probability of occurrence
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Complexity of mathematical concept

First we project data points to
our candidate line. This gives a
log(odds) value to each sample.

Then, we transform log(odds) to
probabilities using below formula:
elog(odds)

p= 1+ elog(odds)

Calculate likelihood of transformed
data points to find the shape of our

squiggle.



Probability of occurrence

D

<

0.5

- _ XEXNN — -

/

|

\
r X
\

|

X XXXX”

Complexity of mathematical concept

Likelihood of a sample

predicted probability

Likelihood of all data points —
(0.91 0.9 *0.92) *
((1-09)*(1-0.3)*(1- 0.001)) =-3.7

This also means that the likelihood of
the log(odds) line is -3.7



5. Now, we rotate log(odss) line and again
calculate the likelihood.
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Y=0+60-X1---0,-X,

1 1

g(’z) - 14+ e - 1+€—(90+91~X1---9n~Xn)

9(z) = P(y = 1]x;0)
Py =0[x;0) =1— P(y = 1|x;0)
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Support Vector Machines



White ball is classified!

Is it logical to classify the white ball as green?!



White ball is classified!

Margin
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Margin

When we use a threshold that give the biggest margin
We are using a maximal margin classifier!!!

In this case, the middle point is the largest margin.



Problem!!!!
Maximal margin classifier are sensitive to outliers!

To solve this:
We should allow misclassifications.
A margin that allows misclassification are called "Soft Margin”.

In order to find the best soft margin, we need to do “Cross Validation”!



When we use a soft margin to determine the best threshold to
classify observations, we are using a “Soft Margin Classifier”
a.k.a “Support Vector Classifier”!

Misclassification/Outlier

Soft margin ® Soft margin



What if our data would be like this?
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No matter where you set the margins ...
Support vector classifier cannot handle it!

This is where we need “Support Vector Machines”!!!!



The main idea behind the SVM:

1. Start with the data in a lower dimension
In this case, a 1-dimensional space
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The main idea behind the SVM:

2. Move the data to a higher dimension.
In this case, a 2-dimensional space
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The main idea behind the SVM:

3. Find the support vector classifier that can
separate the higher dimension data into two groups.
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How we decide how to transform the data to a higher dimension?
In below case, we used power 2 of the x-axis values to create the y-axis.

But, what about square root? Or power 3?

A

% By using Kernels!!!!




For example: “Polynomial Kernel Function”
It increases the dimension by setting d parameter (degree of the polynomial)

In below case, d is equal to 2. To be exact, it computes 2-dimensional
relationships between each sample pair.
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Thank you for your time!



